
J F M A M
J A S O N

J
D

x

J F M A M
J A S O N

J
D

x

2018-01-31 11:59:59

2018-01-31 11:59:59

2018-01-31 11:59:59

2018-01-31 11:59:59

2018-01-31 11:59:59

2018-01-31 11:59:59

2018-01-31 11:59:59

2017-11-28 12:00:00

RStudio® is a trademark of RStudio, Inc. • CC BY SA RStudio • info@rstudio.com • 844-448-1212 • rstudio.com • Learn more at lubridate.tidyverse.org • lubridate 1.6.0 • Updated: 2017-12

Dates and times with lubridate : : CHEAT SHEET
Date-times

2017-11-28 12:00:00
A date-time is a point on the timeline,
stored as the number of seconds since
1970-01-01 00:00:00 UTC

dt <- as_datetime(1511870400)
"2017-11-28 12:00:00 UTC"

1. Identify the order of the year (y), month (m), day (d), hour (h),
minute (m) and second (s) elements in your data.

2. Use the function below whose name replicates the order. Each
accepts a wide variety of input formats.

PARSE DATE-TIMES (Convert strings or numbers to date-times)

date_decimal(decimal, tz = "UTC")
date_decimal(2017.5)

now(tzone = "") Current time in tz
(defaults to system tz). now()

today(tzone = "") Current date in a
tz (defaults to system tz). today()

fast_strptime() Faster strptime.
fast_strptime('9/1/01', '%y/%m/%d')

parse_date_time() Easier strptime.
parse_date_time("9/1/01", "ymd")

ymd_hms(), ymd_hm(), ymd_h().
ymd_hms("2017-11-28T14:02:00")

ydm_hms(), ydm_hm(), ydm_h().
ydm_hms("2017-22-12 10:00:00")

mdy_hms(), mdy_hm(), mdy_h().
mdy_hms("11/28/2017 1:02:03")

dmy_hms(), dmy_hm(), dmy_h().
dmy_hms("1 Jan 2017 23:59:59")

ymd(), ydm(). ymd(20170131)

mdy(), myd(). mdy("July 4th, 2000")

dmy(), dym(). dmy("4th of July '99")

yq() Q for quarter. yq("2001: Q3")

hms::hms() Also lubridate::hms(),
hm() and ms(), which return
periods.* hms::hms(sec = 0, min= 1,
hours = 2)

2017-11-28T14:02:00

2017-22-12 10:00:00

11/28/2017 1:02:03

1 Jan 2017 23:59:59

20170131

July 4th, 2000
4th of July '99

2001: Q3

2:01

2017.5

2016 2017 2018 2019 2020

J F M A M
J A S O N

J
D

x

2017-11-28
A date is a day stored as
the number of days since
1970-01-01

d <- as_date(17498)
"2017-11-28"

12:00:00
An hms is a time stored as
the number of seconds since
00:00:00

t <- hms::as.hms(85)
00:01:25

GET AND SET COMPONENTS

date(x) Date component. date(dt)

year(x) Year. year(dt)
isoyear(x) The ISO 8601 year.
epiyear(x) Epidemiological year.

month(x, label, abbr) Month.
month(dt)

day(x) Day of month. day(dt)
wday(x,label,abbr) Day of week.
qday(x) Day of quarter.

hour(x) Hour. hour(dt)

minute(x) Minutes. minute(dt)

second(x) Seconds. second(dt)

week(x) Week of the year. week(dt)
isoweek() ISO 8601 week.
epiweek() Epidemiological week.

quarter(x, with_year = FALSE)
Quarter. quarter(dt)

semester(x, with_year = FALSE)
Semester. semester(dt)

am(x) Is it in the am? am(dt)
pm(x) Is it in the pm? pm(dt)

dst(x) Is it daylight savings? dst(d)

leap_year(x) Is it a leap year?
leap_year(d)

update(object, ..., simple = FALSE)
update(dt, mday = 2, hour = 1)

Use an accessor function to get a component.
Assign into an accessor function to change a
component in place.

d ## "2017-11-28"
day(d) ## 28
day(d) <- 1
d ## "2017-11-01"

January

xxxxxxxx

Time Zones
R recognizes ~600 time zones. Each encodes the time zone, Daylight
Savings Time, and historical calendar variations for an area. R assigns
one time zone per vector.

Use the UTC time zone to avoid Daylight Savings.

OlsonNames() Returns a list of valid time zone names. OlsonNames()

with_tz(time, tzone = "") Get
the same date-time in a new
time zone (a new clock time).
with_tz(dt, "US/Pacific")

force_tz(time, tzone = "") Get
the same clock time in a new
time zone (a new date-time).
force_tz(dt, "US/Pacific")

PT
MT CT ET

7:00
Eastern

6:00
Central

5:00
Mountain4:00

Pacific

7:00
Eastern

7:00
Central

7:00
Mountain

7:00
Pacific

stamp() Derive a template from an example string and return a new
function that will apply the template to date-times. Also
stamp_date() and stamp_time().

1. Derive a template, create a function
sf <- stamp("Created Sunday, Jan 17, 1999 3:34")

2. Apply the template to dates
sf(ymd("2010-04-05"))
[1] "Created Monday, Apr 05, 2010 00:00"

Tip: use a
date with
day > 12

Stamp Date-times

Round Date-times
floor_date(x, unit = "second")
Round down to nearest unit.
floor_date(dt, unit = "month")

round_date(x, unit = "second")
Round to nearest unit.
round_date(dt, unit = "month")

ceiling_date(x, unit = "second",
change_on_boundary = NULL)
Round up to nearest unit.
ceiling_date(dt, unit = "month")

rollback(dates, roll_to_first =
FALSE, preserve_hms = TRUE)
Roll back to last day of previous
month. rollback(dt)

Jan Feb Mar Apr

Jan Feb Mar Apr

Jan Feb Mar Apr

https://creativecommons.org/licenses/by-sa/4.0/
mailto:info@rstudio.com
http://rstudio.com
http://lubridate.tidyverse.org/

Make an interval with interval() or %--%, e.g.

i <- interval(ymd("2017-01-01"), d) ## 2017-01-01 UTC--2017-11-28 UTC
j <- d %--% ymd("2017-12-31") ## 2017-11-28 UTC--2017-12-31 UTC

PERIODS DURATIONS

RStudio® is a trademark of RStudio, Inc. • CC BY SA RStudio • info@rstudio.com • 844-448-1212 • rstudio.com • Learn more at lubridate.tidyverse.org • lubridate 1.6.0 • Updated: 2017-12

years(x = 1) x years.
months(x) x months.
weeks(x = 1) x weeks.
days(x = 1) x days.
hours(x = 1) x hours.
minutes(x = 1) x minutes.
seconds(x = 1) x seconds.
milliseconds(x = 1) x milliseconds.
microseconds(x = 1) x microseconds
nanoseconds(x = 1) x nanoseconds.
picoseconds(x = 1) x picoseconds.

period(num = NULL, units = "second", ...)
An automation friendly period constructor.
period(5, unit = "years")

as.period(x, unit) Coerce a timespan to a
period, optionally in the specified units.
Also is.period(). as.period(i)

period_to_seconds(x) Convert a period to
the "standard" number of seconds implied
by the period. Also seconds_to_period().
period_to_seconds(p)

Add or subtract periods to model events that happen at specific clock
times, like the NYSE opening bell.

dyears(x = 1) 31536000x seconds.
dweeks(x = 1) 604800x seconds.
ddays(x = 1) 86400x seconds.
dhours(x = 1) 3600x seconds.
dminutes(x = 1) 60x seconds.
dseconds(x = 1) x seconds.
dmilliseconds(x = 1) x x 10-3 seconds.
dmicroseconds(x = 1) x x 10-6 seconds.
dnanoseconds(x = 1) x x 10-9 seconds.
dpicoseconds(x = 1) x x 10-12 seconds.

duration(num = NULL, units = "second", ...)
An automation friendly duration
constructor. duration(5, unit = "years")

as.duration(x, …) Coerce a timespan to a
duration. Also is.duration(), is.difftime().
as.duration(i)

make_difftime(x) Make difftime with the
specified number of units.
make_difftime(99999)

Make a period with the name of a time unit pluralized, e.g.

p <- months(3) + days(12)
p
"3m 12d 0H 0M 0S"

Make a duration with the name of a period prefixed with a d, e.g.

dd <- ddays(14)
dd
"1209600s (~2 weeks)"

Add or subtract durations to model physical processes, like battery life.
Durations are stored as seconds, the only time unit with a consistent length.
Difftimes are a class of durations found in base R.

Number
of days etc.Number

of months
Exact

length in
seconds

Equivalent
in common

units

INTERVALS
Divide an interval by a duration to determine its physical length, divide
an interval by a period to determine its implied length in clock time.

Math with Date-times — Lubridate provides three classes of timespans to facilitate math with dates and date-times

a %within% b Does interval or date-time a fall
within interval b? now() %within% i

int_start(int) Access/set the start date-time of
an interval. Also int_end(). int_start(i) <- now();
int_start(i)

int_aligns(int1, int2) Do two intervals share a
boundary? Also int_overlaps(). int_aligns(i, j)

int_diff(times) Make the intervals that occur
between the date-times in a vector.
v <-c(dt, dt + 100, dt + 1000); int_diff(v)

int_flip(int) Reverse the direction of an
interval. Also int_standardize(). int_flip(i)

int_length(int) Length in seconds. int_length(i)

int_shift(int, by) Shifts an interval up or down
the timeline by a timespan. int_shift(i, days(-1))

as.interval(x, start, …) Coerce a timespans to
an interval with the start date-time. Also
is.interval(). as.interval(days(1), start = now())

 l

Start
Date

End
Date

Math with date-times relies on the timeline,
which behaves inconsistently. Consider how
the timeline behaves during:

A normal day
nor <- ymd_hms("2018-01-01 01:30:00",tz="US/Eastern")

The start of daylight savings (spring forward)
gap <- ymd_hms("2018-03-11 01:30:00",tz="US/Eastern")

The end of daylight savings (fall back)
lap <- ymd_hms("2018-11-04 00:30:00",tz="US/Eastern")

Leap years and leap seconds
leap <- ymd("2019-03-01")

12:00 1:00 2:00 3:00

2019 2020 2021

1:00 2:00 3:00 4:00

1:00 2:00 3:00 4:00

Durations track the passage of
physical time, which deviates from
clock time when irregularities occur.

nor + dminutes(90)

gap + dminutes(90)

lap + dminutes(90)

leap + dyears(1)

12:00 1:00 2:00 3:00

2019 2020 2021

1:00 2:00 3:00 4:00

1:00 2:00 3:00 4:00

Periods track changes in clock times,
which ignore time line irregularities.

nor + minutes(90)

gap + minutes(90)

lap + minutes(90)

leap + years(1)

12:00 1:00 2:00 3:00

1:00 2:00 3:00 4:00

1:00 2:00 3:00 4:00

2019 2020 2021

Intervals represent specific intervals
of the timeline, bounded by start and
end date-times.

interval(nor, nor + minutes(90))

interval(gap, gap + minutes(90))

interval(lap, lap + minutes(90))

interval(leap, leap + years(1))

12:00 1:00 2:00 3:00

1:00 2:00 3:00 4:00

1:00 2:00 3:00 4:00

2019 2020 2021

Not all years
are 365 days
due to leap days.
Not all minutes
are 60 seconds due to
leap seconds.
It is possible to create an imaginary date
by adding months, e.g. February 31st
jan31 <- ymd(20180131)
jan31 + months(1)
NA
%m+% and %m-% will roll imaginary
dates to the last day of the previous
month.
jan31 %m+% months(1)
"2018-02-28"
add_with_rollback(e1, e2, roll_to_first =
TRUE) will roll imaginary dates to the
first day of the new month.
add_with_rollback(jan31, months(1),
roll_to_first = TRUE)
"2018-03-01"

https://creativecommons.org/licenses/by-sa/4.0/
mailto:info@rstudio.com
http://rstudio.com
http://lubridate.tidyverse.org/

